
CONVERGENT-DIVERGENT NOZZLE FLOWS

by

: .James R. Kliegel and Victor Quail

Approved by: _.._ ___

meS R. Kliegel,_Manager
opulsion Analysis Department

02874-6002-R000 30 December 1966

Prepared for

National Aeronautics and Space Administratio..

Manned Spacecraft Center

Under Contract NAS9-4358

TRW SYSTEMS

One Space Park

Redondo Beach, California

1967009614-002

https://ntrs.nasa.gov/search.jsp?R=19670009614 2018-07-24T22:29:30+00:00Z



ACKNOWLEDGMENT

The numerical results given in this report were obtained with the assistance

of T. J. McCarron, J. E. Melde, G. R. Nickerson and M. L. Sprankle of the Compu-

tation and Data Reduction Center, TRW Systems.

ii

1967009614-003



CONTENTS

Page

ACKNOWLEDGMENT ............................. il

NOMENCLATURE ............................... vii

i. INTRODUCTION ............................. I-i

2. UNIFORM EXPANSIONS .......................... 2-1

3. UNCHOKED NOZZLE FLOWS ......................... 3-1

4. RELATIONSHIP TO HALL'S TRANSONIC SOLUTION ............... 4-1

5. TWO-ZONE NOZZLE E_T'ANSIONS ....................... 5-1

REFERENCES .............................. R-I

APPENDIX A. ONE-DIMENSIONAL CHANNEL FLOW EQUATIONS ............ A-I

A.I. Uniform Expansions ................... A-I

A.2. Multlstream Expansions ................. A-2

A.3. Two-Zone Expansions .................. A-5

APPENDIX B. RATIONAL FRACTION APPROXIMATIONS ............... B-I

iii

1967009614-004



ILLUSTRATIONS

Figure Page

2-1 Contours of Constant Speed in Axlsymmetric Hyperbolic

Nozzle with y = 1.4 and R = 5................ 2-J6

2-2 Contours of Constant Speed in Planar Hyperbolic Nozzle
with y = 1.4 and R = 5 .................... 2-14

2-3 Throat Wall Velocity in Axisymmetrlc Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius "_

of Curvature, Y = 1.2 ..................... 2-15

2-4 Throat Wall Velocity in Axlsymmetrlc Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, Y = 1.4 ...................... 2-15

2-5 Throat Wall Velocity in Axlsymmetrlc }J_perbollc Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, _ = 1.67 .................... 2-15

2-6 Throat Axis Velocity in Axisymme_ric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, N = 1.2 ...................... 2-16

2-7 Throat Axis Velocity in Axlsymmetrlc Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, Y = 1.4 ..................... 2-16

2-8 Throat Axis Velocity in Axisymmetric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature Y = 1 67 2-16• eooeeooeooeeeeeooeeo

2-9 Sonic Point Displacement onAxis of Axisymmetrlc

Hyperbolic Nozzle as a Function of Inverse Normalized

Throat Wall Radius of Curvature, ¥ ffi1.2 . .......... 2-17

2-10 Sonic Point Displacement on Axis of Axlsymmetric

Hyperbolic Nozzle as a Function of Inverse Normalized

Throat Wall Radius of Curvature, Y ffi1.4 ........... 2-17

2-11 Sonic Point Displacement on Axls of Axlsymmetric

Hyperbolic Nozzle as a Function of Inverse Normallzed

Throat Wall Radius of Curvature, Y = 1.67 ........... 2-17

4-1 a vs. z .......................... . 4-7
o

4-2 aI vs. z ........................... 4-7

4-3 b vs. z ............................ 4-7
o

iv

1967009614-005



ILLUSTRATIONS (Continued)

Figure

4 4 bi vs z 4 7

4-5 b2 vs. z ........................... 4-8

4-6 b 3 vs. z ........................... 4-8

4-7 c vs. z ........................... 4-8 _

4-8 cI vs. z ........................... 4-8 _

4-9 c2 vs. z ........................... 4-9 _

4-10 c 3 vs. z ........................... 4-9

4-11 c4 vs. z ........................... 4-9

4-12 c5 vs. z ........................... 4-9

5 1 Two Zone Expansion in Nozzle 5'27

5-2 Contours of Constant Pressure in Two-Zone Nozzle Expansion . . 5-28

5-3 Contours of Constant Speed in Two-Zone =Nozzle Expansion .... 5-28

5-4 Contours of Constant Pressure in Unifo:m Nozzle Expansion... 5-29

5-5 Contours of Constant Speed in Uniform Nozzle Expansion .... 5-29 _

1

-I

-5 _ J

|

1967009614-006



i

TABLES

Table

2-1 Axis Velocity in an Axlsymmetric Hyperbolic Nozzle

(V = '_4, R = 5) 2-12u. • • # • • • • • • • • • • ¢ • • • • • • • • •

!

2-2 Wall Velocity in an Axisymmetric Hyperbolic Nozzle

(V = 1.4, R = 5) ....................... 2-12

2-3 _xis Velocity in a Planar Hyperbolic Nozzle < I"
(Y = 1.4, R = 5) ..................... . . 2-13 I

4
: : 4

2-4 Wall Velocity in a Planar Hyperbolic Nozzle i}

(V 1 4 R 5) 2 13 :_

4-i Sonic Point Displacement on Axis of Axisymmetric
Nozzle as a Function of Inverse Normalized Throat i

1

Wall Radius of Curvature (V = 1.2) . ............. 4-4
"i

I-
4-2 Sonic Point Displacement on Axis of Axisymmetric _ _

Nozzle as a Function of Inverse Normalized Throat o
Wall Radius of Curvature (V = 1.4) ............... '_-5 :_

4-3 Sonic Point Displacement on Axis of Axisymmetric iiNozzle as a Function of Inverts. Normalized Throat _. _ : :_
Wall Radius of Curvature (V = 1.67) ..... ........ : . 4-6

2 . .

_ -

0

¢ -

• _ "- -_ ' J o

vi : _ .,- _.... /-

1967009614-007



NOMENCLATURE

u

a*, a* = sonic velocity

A = nozzle cross-sectional area

m, m = mass flow

P, P = pressure

r = transformed coordinate, y/y*

R = nozzle throat wall radius of curvature normalized with respect to

nozzle throat half-helght; gas constant

T = temperature

u, u = velocity in x-direction normalized with respect to sonic velocity

v, v = velocity in y-dlrectlon normalized with respect to sonic velocity

x = axial distance from nozzle throat plane

X = fraction of mess flow in outer zone of a two-zone expansion

y = nozzle half-helght

y* = nozzle throat half-helght

z -- transformed coordinate, x/R I/2 y*

Y, 7 = ratio of specific heats

= nozzle contraction ratio

p, p = density

_ 1 for clrculsr arc throats, 0 for parabolic throats,
-R for hyperbolic throats-

= 1 for axisymmetric no_zzle, 0 for planar nozzle

Superscript

* - sonic condition; throat condition ..

Subscripts •

,j

c - chamber condition

o - stagnation condition ;_

s = at the streamiine dividing the two. flow zones _

= thxoat condition _i,

w - at the wall of a nozzle .

Vii
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i. INTRODUCTION

This report contains the results of a study of uniform two-zone perfect

gas expansions in convergent-divergent nozzles. This study was performed by

TRW Systems Group for NASA (MSC) under contract NAS 9-4358. l__pro_ement of

Analytical Predictions of Delivered Specific Impulse.

The objective of this contract was to develop a family of four computer

programs to calculate inviscid, one-dimensional and axls}munetric nonequilibrlum

nozzle flow fields accounting for the nonequillbrium effects of finite rate chemical

reactions 5etween gaseous combustion products and velocity and thermal lags between

gaseous and condensed combustion products.

The four programs developed under this contract are:

• A one-dimenslonal program which calculates the equilibrium,

frozen and kinetic performance of propellant systems: having

gaseous exhaust products containing the elements carbon,

hydrogen, oxygen, nitrogen, fluori_:" _,:_ e2_[er[ne.

• A one-dimensional program ,:hich calculates the equilibrium,

f frozen anakinetic performance of systems having gaseo_ and

coDdensed exhaust products ccntalning the elements caz_;e_:.

hydrogen, oxygen, nltro_n, fluorine, chlorine and one me, el

element, either aluminum, beryllium, boron ,or lithium--

• An axisymmetric progr-6m_ calculates the kinetic p_r--

formance of propellan£ systems having gaseous exhaust p;::..zts

containing the elements ca-bon_ hydrogen, oxygen, rit_--_.._

fluorine and chlorine. On .-ption, this program cons_-_:>

either the expanslon.of a u_,_l mixture (the Ide%/.- :_ne

case) or of a two-zoned mix£ure _h= film cooled-_ -.:case)

• An axis)_metric program which calculates cne ki_;+-._" per-

formance of propellant systems having gaseo_Js a_._[_:ondeused

exhaust products containing the elements carbon hydrogen,

oxygen, nitrogen, fluorine, chlorine and one metai element,
either aluminum, beryllium, boron or lithium. This_program
considers only the expansion of a uniform m_xture (the ideal

engine case).

These programs differ in a number of ways from previous programs developed

to calculate nonequilibriumnoz_le expansions.

l-i
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In particular:

J ® 'ine pro_ms are completely self-contained, requiring specifi-

caL_on of only the propellant system (elemental composition

and heat of formation), relaxation rates and nozzle geometry
to ru a case.

® The chemical species considered by the p:ograms have been

selected to allow accurate equilibrium, frozen and kinetic

performance analyses of cryogenic, space storable, p::epackaged,

hybrid and solid propellant systems of current and projected

operational use.

• All dissociation-recombination and binary excha_:_: !eactions

between the gaseous species present in the exhaust are con-

side _ed by the programs allowim complete kinetic expansion
calculations.

C

• The programs utilize TRW Systems' implicit integration method

which allows rapid integration of the cb_mica! and gas-particle

relaxation equations from equilibrium chamber conditions.

Typical run times are three minutes for the o_e-di_ensional

programs and ten minutes for the axisymmetric programs on an

IBM 7094 Mod II computer.

, The programsallow analysis of the performance loss associeted

with film coo ing in propellant systems having all gaseou_

exhaust products.

• The programs allow simultaneous consideration of both chemical

and gas-partlcle relaxation losses in propellar_ systems

having condensed exhaust products.

o The one-dimensional programs allow equilibrium, frozen and

kinetic performance calculations to be performed during a

single machine rum.
3

: o The programs are written in machine independent language

(FORTRAN IV), allowing their use on all standard computer-

The study de_crlbed in this report was performed to determine the appropriate

transonic initial conditious for the two axisymmetric characteristic programs

developed under NAsA (MSC) contract NAS 9m4358. Since the study resulted _in a _ew .o . i

method of analyzln_ both uniform and two-zone conversent-di_ergent nuzzle flows -

and r_v_aled the nature and interrelationship of prevlous nozzle analyses, the _

results of this study are believed robe of sufflc!ent general _nteres_to merit _ -_

publlcatiOn- as a separate contract report. The results of th:s study are pre-

sented in the following sections without rof_rence-to their use in the axis_metr_c _ _

ID programs .... _

-" _ .-1-2 " _ _.... -_
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2. UNIFORM EXFANSIONS

7he equa:ions governing the inviscic isentropic expansion ef a perfect

_a_ through a cenverge:_t-divergent nozzle are

2 _ y-____i2) _u # (i - 2 _ 7-1 2) 3v y-l, 2 v2) m___!
(2 - u ¥+! v _x "" Y+l u _y + [i - y+l_U + ] Y

4 _u
- 0 (2-].)

- _ uv _y

3v _u
- 0 (2-2)

_x _y

where the velocities have been normalized with respect to the throat sonic velocity

and - equals 0 or i depending on whether the nozzle is planar or axisymmetric.

In seeking solutions of the above equations, it is desirable to choose a set of

_on-dimensional coordinates such that the various velocity derivatives are

indevendent of the nozzle scale. For large _al_es of the norm.alized throat wall

radius of curvature, the flow velocities asymptotically approach those obtained

D from the one-dimensional channel flow equations. It can be shown from the channel

flow equations (see Appendix A) that for choked flows

/w+l i x

u = I + / y+l R y* + "'" (2-3)

at [he nozzle throat, where x is the distance from the throat plane, y* is the

throat half height, and R is the normalized throat wa3i radius ef curvature.

Examination of this equatio_ reveals that the axial nozzle coordin x must be

normalized with respect to the distance /-_y* in order for the dimensionless

axial velocity gradient to remain of order one at the nozzle thzoat independent of

the nozzle scale. Since the nozzle scale perpendicular to the nozzle axis is

set by the throat half height y*, it is apparent that the perpendicular coordinate

v should be normalized with respect to the distance y*. Thus, solutions of the

above equations should be sought in terms of the normalized coordinates

z = y, (2-4)

r y, (2-5)

2-1
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rather than in the x,y coordinate system for large values of the normalized

throat wall radius cf curvature.

s(1)lhe aoove exial coordinate choice differs from Hall' by a factor

_+i R, since the axial coordinate used by Hall is
y+!

/_+i x__zH = y--_ R y, (2-6)

As will be shown later, the above choice results in the present solution being

uniformly _alid for all (subsonic, transonic and supersonic) nozzle flow regimes,

_#hile Hall's choice limits the validity of his solution to the trnnsonic throat

region.

In the r,z coordinate system, the above equations become

i
[

2 y-i 2,_u 2 7-1 2,_v y-l, 2i (i- u - y+l v _z + (i- v - _+i u J_-fr+ [i- y+l_U +v 2)]__Ivri
!

4 8u

7+1 uv _y 0 (2-7)

;z _r 0 (2-8)

The boundary conditions are

v(o,z) = 0 (2-9)

and

v('rw'Z) _ drdz
= (2-10)

At the nozzle throat,

2

= i + x-- +
rw 2R "'"

2
z

= i + _- + ... (2-11)

dr
w

for all throat sections. Thus, both u and _ are 0(i) at the throat and v must

be 0(R -I/2). This suggests that the velocity components can be expressed as

expansions in inverse power of R, i.e.,

;-2
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ul(r,z) u2(r,z)
u = u (r,z) + + + .. (2-12)

o R R2 "

vl(r,z) v2(r,z)

v = / R [Vo(r'z) + R + R2 + .,.] (2-13)

-I
Substituting into equations (2-7) and (2-8) and equating po_'ers of R separately

yields two sets of equations:

(2-14)o _z y+l

_U
0

- 0 (2-15)8r

n _ 2 4 n
i - u° _ + I - y+l Uo _ + - y+--_Uo Vo --3r = _n' n >.i (2-16)

gVn_ I _un
- 0 _ }I (2-17)az 8r

where

_v°Y

_y.._. 2 __Vo 2 aUl aV._l+_!_UoU_+u___v_J-_ �(_UoU_+_, Ì)_ __ UoO_)_

+_I2uu +_21% 4 _u__,o_ o,_-+_-_(_o_+_VoJ_n- <2-19)
t D.t

From equations (2-9), (2-10), (2-12) and (2-13), it is foun_ _nat the boundary

conditions are

Vn(O,Z) = 0 n >.0 (2-20)

and dr

Vn(rw,Z) = u (rw,z) wn d-_ n >_0 (2-21)

2-3
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[auation (2-15) shows that u (r z) is a function of z a]one. Thus,
• 0

u (r,z) = a (z) (2-22)
0 0

Equation (2-14) is satisfied if v (r.z) is of the form,0

v (r,z) = a1(z)r + _a3(z)r -I + (i -4) a5(z) (2-23)0

from the axis and wail boundary conditions [equations (2-20) and (2-21)], it is

easily sho_m th_ ~

a dr

o w (2-24)
al = r dz

W

a3 = 0 (2-25)

a5 _ 0 (2-26)

Substituting the above results into equation (2-14) yields

2 da { ao21a dr
o y-i o w _ 0 (2-27)

ii - a° jd-_-+ (_ + i) i - y+l r dz
w

which is the one-dimensional channel flow equation. The solution of the above

equations defines the one-dimensional velocity distribution (Uo a_d vo) through

the nozzle. Since the one-dimensional solution is valid for all (subsonic,

transonic and supersonic) nozzle flow regimes, the present solution will also be

valid for all nozzle flow regimes. The one-dimensional throat boundary conditions

are that

a (0) = 1 (2-28)
0

al(01 = 0 (2-29)

for both planar and axisymmetric r._zzle flows, sinc&

dr

wi -0
0

at the nozzle throat.

2-4
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The first order equations are

(i 2I_ul (i _ y-i Uo2 ) (BVl _Vl) 4 _Ul-%,Ff-z+ ,_-7-+------uv --Y_FI r y+l o o 3r

2 8Uo '8voI UoU+ v° +IVo

8Vo 8Ul
= 0 (2-32)9z 8r

From equations (2-23) and (2-32), it is easily shown that

2

uI = b (z) + b2(z)r (2-33)

where

i dal

b._ = 2 dz (2-34)

From equatiors (2-20), (2-31), and (2-33), it can be shown that

3

vI ffibl(Z)r + b3(z)r (2-35)

where

21db o

_i - ao ,d-_-+ (_ + i)(i- y-iy+lao2)bl = 2aobo[_+ _+_II(_+ l)al] (2-36)

2"db2
(i - a° )d-z--+ (_ + 3)(1 7-1 ao2)b 3 8y+l - _ aoalb2

rdao 2r]_:1 da__o + (i + 7-i
-- 2ao%La-_+_-'_1('''+ 1)al] + al LYe" dz _ _)al] (2-37)

From the wall boundary condition [equation (2-21)], it can be shown that

dr

rw2) 1 w 2bl ffi (bo + b2 r dz - b 3 r w (2-38)w

The solution of the above equations defines the first order velocity components

(u 1 and Vl) through the nozzle.

2-5
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Examination of equations (2-36) and (2-37) reveals that they are singular at the

nozzle throat (where a = i). Thus, the above equations are algebraic at the throat
O

and cam be solved directly for bo(0), bl(0) and b3(0), yielding

I
b (0) = -- (2-39)
o 4

4¢ 2 (2-40)

for axisymmetric flows and

i
b (0) = -- (2-42)
o 6

bl(0 ) = _ 16 _ (2-43)

b3(0 ) _ 16 _ (2-44)

•for planar flows. From equations (2-24) and (2-34) it can be shown that

b2(O ) _ 12 (2-45)

for both axisymmetric and planar flows.

The above first order throat conditions are ldentical to those obtained

by Sauer (2)--and Hall (1). The two results differ _ y from the throat plane,

however, due to the different funntional dependence of the coefficients on the

axial coordinate.

Examination of equation (2-16) reveals that it is also singular at the

nozzle throat (where u = I). Thus, the boundary conditions for all orders are
O

set at the nozzle throat, and the various order throat conditions can be determined

directly. The fact that the boundary conditions are set at the throat for all

orders is mathematical proof that the nozzle throat plane sets the choked flow

through the nozzle.

2-6
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Examination of equations (2-24), (2-34) and (2-37) shows that b2 depends

d2r d3r d3r
W W W

on - and b3 depends on-- . Thus, if _ is discontinuous the first order
dz2 dz3 dz3 '

solution will be discontinuous. Thus, in general, if the wall derivative w
dz 2n+l

is nonanalytic, the nth order _clution of the above ecuac±ons will be discontinuous.

The complete solution of the above equations will be ana±ytlc only if the wnll !_

analytic.

The second order equations are

21 _u2 _ '_v2 mv2,
y+l UoVoy+]

SUo oI UoU+ VoV , ++ +
Y-I 2 _mVo 2"_Ul

y+l{_

_vI _u2
= 0 (2-47)

_z _r

From equations (2-35) and (2-47), it is easily shown that

u2 = Co(Z ) + c2(z)r 2 + c4(z)r 4 (2-48)

where
db.

i _ (2-49)
c2 = 2 dz

1 db3

c4 = 4 dz (2-50)

r- From equations (2-20), (2-46) and (2-48), it can be shown that

2-7
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v2 = Cl(Z)r + c3(z)r3 + c-(z)r 5 (2-51)9

where

( 2)% a> = [ _ ]1 - a ° _+ (m+ 1)(1 - ¥-1 ".- + b 2) daY+I Cl (2ao o o _ + (l+m) aI

"dbo Y-1
+_o_o[_ +_ +_)_] _2-_2)

"dc2 8

[ dao Y-I ] [ Y-I dao +(i + _ re)all= 2(aoC2 + bob2) t_z-z + 7-_ (I + m)alj + 2albl [ dz 7+1

4 b "dal db2 Y-I

db ] ]o Y-i 2[y-i dbo y-i., (2-53)+ 2Sob2 d-_ + y--$_(l+ m)bI + az [Y+I dz + (1 +_ _,,bI

( 2) ao2)°51 - a -+ (m + 5)(i - Y-__I _ 1--6aoalC4o Y+l Y+l

[dao Y-i -i

4 "dal :db2

+ --lab +_hl_-_-+2_oh[dn-+_-_+_)h]y+li o 3 y+l (3

db2

From the wall boundary condition [equation (2-21)], it can be shown that

dr

+ c2rw2 + _4rw4)r I w 2 4Cl = (Co dz c3r w - c5rw (2-55)
w

The solutlo,, of the above equations defines the second order velocity components

(u 2 and v2) through the nozzle.

¢.
2-8
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As previously discussed, the above equations are singular at the throat

and can be solved directly to determine the second order throat covditions.

Thus,

c (0) "1"-Or' �57o = 288 (2-56)

el(0) 28y + 93 /X_= 288 2 (2-57)

)

^, 4Y + 15
c2(uJ = 24 (2-58)

20y + 63
=3(0)= - /-'-= (2-59)96 ¢ 2-_

c4(0) 2y + 9= 24 (2-60)

%(0) = Y'I'3 /r_ (_-61)9 ¢ 2

for axisymmetrlc flows and

c (0) = _ (2-62)o 270

c1(0) = 34y + 195 _ (2-63)1080 v 2

c2(0) = 2Y + 9- 18 (2-64)

c3(0 ) = 5y + 21 F_-'_" i- 54'" V-'T- (2-65) !

y+6
c4(0) = (2-66)18

c5(0) 22y + 75 _ (2-67)= 360' 4 2

for planar flows.

The above second order throat conditions are identical to those obtained

by Hall _I)'" Both the first and second order throat conditions are _-_- -........ e_naent

of the nozzle shape and are thus universally valid for all nozzle flows. The

solution away from the throat Qepends on the nozzle Shaps for all orders, however.

2-9
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The third and higher order equations can be similarly obtained.

The throat boundary conditions for these equations depend on the nozzle

shape, and are thus not universally valid for all nozzle flows. The solutions

of these equations are polynomial in r of order 2n and 2n+l, respectively.

for u and v . Thus, studies of nozzle flows usinB numerical or integral tech-n n

niques which assume that the velocity components can be represented by polynomials

in r are m_thematically equivalent to the present analysis and will have errors

of the same order !-_ when terms centaining higher powers of r in u and v are

neglected. The second order solution gfven by Oswatitsch (3) does not contain terms

4 r5
of r and in his u2 and v2, respectively. This selution is thus not truly• Z

second order, but contains errors of order _ due to neglecting these terms. This

explains the discrepancy between 0swatit=ch's and Hall's second order results

noted by Hall (1). It is noted chat a number of previous analyses (4'5'6) have

utilized terminated polynomials in r of order 2n and 2n-I for u and v, respectively,

and that these analyses are of inconsistent order, being of order n in u and n-i

in v.

$_ Figures 2-1 and 2-2 show the results of the present analysis for the flow

of air (y = 1.4) through axisymmetric and planar hyperbolic nozzles having a

normalized throat wall radius of curvature of 5. Tables 2-i through 2-4 tabulate

the velocify distribution along the 8xis and wall in these nozzles. In general,

the convergence of the solution is fastest in the subsonic region and slowest in

the supersonic region. This is to be expected, since the deviation from one-

dimensional flow increases through the nozzle and is greatest in the supersonic

section.

Figures 2-3 through 2-ii show the first and sec,,ud order throat wall

velocities, the throat axis velocities and the sonic point displaceme_tc as a

function of the normalized throat wall radius of curvature in axisymmetric

hyperbolic nozzles for flows with specific heat ratios of 1.2, 1.4, and 1.6 _.

The throat wall and axis velocity variations are Identical to Hall's results

since the two analyses have the same throat boundary conditions. The sonic

point displacement differs, however, and Hall's results are included fo_ com-

parison. Also included on the velocity plots are second order rational

_ fraction approximations (see Appendix B), which represent the probable true solution.

_ Examination of the figures reveals only a weak dependence of the transonic results

!.

2-10 _ i
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on gamma. Comparison of the second order solution with the second order rational

fraction approximation shows that this solution probably represents the true

solution quite accurately up to normalized throat wall radii of curvqtur_s of threes

and gives reasonable estimates of th= L£ansonic flow conditions up to normalized

throat wall radii of curvatures of two. For a normalized throat wall radius of

curvature less than one, t_e second order solution predicts that the throat axis

velocity is supersonic, which is physically impo_;sible. It is concluded that use

of the second order solution should probably be limited to normalized throat wall

radii of curvatures greater than two.

i.
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Table 2-1, Axis Velocity in an Axisymmetric

Hyperbolic Nozzle (7 = 1.4, R = 5)

uI uI u2
x u +-- u +--+--

y--_ Uo o R o R R2

-i,0 0o62_2 0.6231 0.6235

-0.5 0.80£1 0.7772 0.7821

-0.4 0,8396 0.8106 0.8166

-0.3 0.8789 0.8446 0.8517

-0.2 0.9188 0.8793 0.8874

-0.i 0.9593 0.9144 0.9235

0,0 1.0000 0.9500 0.9599

_.i 1.0408 0,9858 0.9964

0._ i.0816 1.0219 1.0330

_ 3 1,1221 ].0579 1.0695

0_4 1.1622 1.0940 1.1057

0,5 1.2017 1,1298 1.1416

1.0 1,3858 1.3024 1.3123

H |

Table 2-2. Wall Velocity in an Axisymmetric

£_- T!yperbolic Nozzle (y = 1.4, R = 5)

x Ul Ul u2
-- u 4--- u + +--

y* Uo o R o R-- 12

-i.0 0. 6252 0.6328 0.6295

-0.5 0. 8011 0. 8306 0 •8262

-0.4 0,8396 0,8737 0. 8692

-0o 3 0,8789 0 •9175 0 •9128

-0.2 0 •9188 0. 9617 0 •9569

-0.,l 0. 9593 i.0059 i. 0011
0.0 I.0000 1.0500 1.0452

0.l i.0408 1.0936 1.0888

0.2 i.0816 i.1364 I.1316

0.3 I.1221 1.1783 i.1734 -

O.4 i,1622 I.2189 i.2140

0.5 1.2017 1.2581 1.2532

I.0 i.3858 i.42_0 i.4242

l

.o

t
"_ _ I_-
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Table 2-3. Axis Velocity in a Plapar

Hyperbolic l_ozzle (Y= 1.4, R = 5_

uI uI u2X

v-_ Uo u + -- u 4 + --
o R o R-- R2

-I.0 0.7303 0.7260 0.7265

-0.5 0.85q6 0.8404 0.8431

-0.4 0.8861 0.8649 0.8681

-0.3 u.9!4i 0.8898 0.893_

-_v._° 0._L_.... 0.9152 0.9192

-0.i 0.9712 0.9408 0.9451

0.0 1.0000 0.9667 0.9713

0.i _.0287 n 9927 0.9976

0.2 1.0577 1.0187 1.0239
q •0.3 i._.86_ 1.0451 1.0502

0.4 1.1148 1.0712 1.0763

0.5 1.1428 ±.0972 1.1023

!.0 1.2749 1.2230 1.2270

Table 2-4. Wall Velocity in a Planar

Hyperbolic Nozzle (_= 1.4, R = 5)

uI uI u2X

y--i- u u +-- u + +-5"o o R o R-- R-

-i.0 0.7303 0.7509 0.7454

-0.5 0.8586 O. 9045 0.8985

-0.4 0.8861 ,)9369 0.9311

-0.3 0.9141 0. 9696 0. 9639

•-0.2 0.9425 i.0022 0. 9967

-O. 1 0. 9712 i.0346 i.0293
".0 I.0000 I.0667 i.0615

o.I i.0287 i.0981 i.0932

0.2 7.0577 1.1287 1.1240

0.3 ].0864 i.1584 i.1538

0.4 i.1148 i.1871 i.1826

0.5 i.1428 i.2145 I.2102

I.0 i.2749 i.3327 i.3286
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------ ONE-DIMENSIONAL SOLUTION

-_ :_ _ FIRST ORDER SOLUTION

SECOND ORDER SOLUTION

Figure 2-1. Contours of Constant Spe=d in Axisy_etric Hyperbolic
Nozzle with Y= 1.4 and R = 5.

----_ ONE-DIMENS IONAL SOLUTION

***FIRST ORDER SOLUTION

--SECOND ORDER SOLUT.'ON

_u J

i\M*= o._ 0.7 o.a . .2 1\,.3 i \,.4

F'Igure 2-2. Contours of Constant Speed in Planar Hyperbo.1._LC
Nozzle with Y = 1,4 and R = 5,
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Figure 2-3. Throat Wall Velocity in Axisymmetric Hyperbolic Nozzleas a Function of Ir_verse Normalized Throat Wall Radius

: of Curvature, "_= 1.2.
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F_gure 2-4. Throat Wall Velocity in Axisym_etric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, Y= 1.4.
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Figure 2-5. Throat Wall Velocity in Axisymmetric Hyperbolic Nozzle
as a Function of Inverse Normalized fhroat Wall Radius

of Curvature, Y= 1.67.
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Figure 2-6. Throat Axis 9elocity in Axisy_etric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, "i= 1.2.
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Figure 2-7. Throat Axzs Velocity in Axisymmetric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, Y= 1.4.
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Figure 2-8. Throat Axis Velocity in Axisymmetric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

I of Curvature, _ = 1.67.
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Figure 2-9. Sonic Point Displacement on Axis of Axisymmetric Hyperbolic
Nozzle as a Function of inverse Normalized Throat Wail

• Radius of Curvature, v = 1.2.i
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FJgure 2-10. Sonic Point Displacement on Axis of Axisy_tric Hyperbolic
Nozzle as a Function of Inverse Normalized Throat Wall
Radius of Curvature, y = 1.4.
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Figure 2-ii. Sonic Point Displacement on Axis of Axisymmetric Hyperbolic
Nozzle as a Function of Inverse Normalized Throat Walli
Radius of Curvature, Y= 1.67.
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I

l 3. UNCHOKED NOZZLE FLOWS

Since unchoked shock free nozzle flows were of secondary interest during

this study, only the applicability of the previous analysis to nozzle flows of

this type will be shown and the throat boundary conditions given. Since the

channel flow equations (see Appendix A) show that for unchoked (symmetric) flows
2

u = u, _ + ! ( Y -1 ) u*2 1 - Y u.2 x
$ 1 1 _u .2 Ry,2 + ... (3-1)

at the nozzle throat, it is apparent that the axial nozzle coordinate x must be

normalized with respect to the distance _ y* when analyzing unchoked nozzle

flows in order for the dimensionless axial velocity gradients to remain of order

one at the nozzle throat independent of the nozzle scale. Since the no_z] e

perpendicular to the axis is set by the throat half height y* fer ell nozzle

flows, it is apparent that the perpendicular coordinate y must be x,ormalized

with respect to the distance y* when analyzing unchoked nozzle flows. Thus

solutions of the equations governing the inviscid isentropic expansion of a

E perfect gas through a convergent-divergent nozzle [equations(2-1) and(2-2)]

should be sought in terms of the normalized coordinates

z y, (3-2)

r=Z

Y* (3-3)

rather than the x,y coordinate system for large values of the normalized

throat walt radius of curvature when a_alyzing either choked or unchoked

nozzle flows, Thus the preceeding analysis is also valid for unchoked nozzle

flows.

Since the flow is symmetrmc, the throat boundary conditions for

unchoked nozzle flows are that the axial derivatives of the various order axial

velocity coefficients (ao_ bop D2, etc.) are zero at the throat. It can be

simply shown from the equa=ions in the preceeding section that the one-

dimensional, first order and second order unchoked throat conditions are

a (0)= a *
o o (3-4)

( al(o) = 0 (3-5)

3-1
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bl(O) = 0 (3-6)

1
= * (3-7)

b2(O) _ ao

b3(O) = 0 (3-8)

Cl(O) = 0 (3-9)

c3(0) = 0 (3-10)

c_(O) = 0 (q--1 1'_
3

It is noted that unlike the choked flow case, the throat boundary conditions are

incompletely specified for unchoked nozzle flows. Physically this occurs because

unchoked nozzle flows are not unique, there being an infinite family of such

flows, the flow of interest being specified by an external constraint, the nozzle

pressure r_tio. This lack of uniqueness appears in the one-dimensional equations

as the unspecifiea throat velocity a* and in the equations governing the various
0

order coefficients by the fact that the axis coefficients (bo, Co, etc.) drop

( from the equations at the throat due to the symmetrical nature of the flow.

The uniqueness of the choked flow solution appears in the equations as a

singularity which is missing in the equations for unchoked flows.

Since an external constraint must be specified in order to obtain a

unique unchoked flow solution, it is desirable to specify a constraint such as

to uniquely determine the throat conditions. The most natural such constraint

is that the mass flow through the nozzle equals the one-dimensional mass flow

through the nozzle. Thus specifying that
!

,2_r) p(r,o)u(r,o) dr _ y-i ,2 y- i
: a* I_+i (1 1. _ - VTT ao )

I , , o _ 2 " (3-12)
o @ a

and expanding the integral as a power series in R-I and equating the coefficients

_f the various powers of R-I to zero yields the unique set of throat conditions

3-2
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'_+i *
b (0) = a (3-13)

o 2(_ + ?; o

e (0) = '_-Jg--t_)2a*o { 16(3 - a*2)o a*2o

o 16(m + 3)2 (m + 5) (m + i) (¥ + i) (i - _ a.2) (I - a.2)y+l

(m + i) (3 -Sa .2)
_ 8(_ + 5) + . o (3-14)

+ 1 1 - a.2
v

o [ ]3(1 - _ ) (i - a.2) + 2 /-c--l- 4o _'+ f(00+ i) + y---+-1%,2- }
1 - Y'- I a,2

y+l o

a* (0J+ i) (3 - 5a.2)

o {8+ o
%(0) = 16(m + 3) i - a.2 -

o

3(1 - _ ) (i - a.2) +2 Y - (_,+ I) +-- a*o y_l y+l o

- } (3-1_)

( 1 - T - 1 a,2
_+i o

a* (m + I) (3 - 5ao.2)

o {_%(0)= 8(,,-,-3)
1 - a.2

o

3(i - _. ) (i - a* y - 1 (0_+ 1) +

+ } (3-16)
1 - _ a.2

_+i o

where

I-i for parabolic throats

g - for circular arc throats (3-17)

for hyperollc throats

It is interestln E to note that the second order throat conditions depend on the wall

shape. Thus only the first order throat conditions are universally valid for all

nozzles. The solution away from the throat depends on the wall shape for all

, orders, however.
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4. RELATIONSHIP TO HALL'S TRANSONIC SOLUTIC'.T

It is evident from the previous discussion that the nozzle flow solution

presented in this report and Hall's transonic solution are closely related.

The exact relationship between the two solutions can be easily seen by roans-

forming Hall's solution to the coordinate system utilized in the present

analysis. Thus, in the r,z coozdinate system, Hall's first and second order z

axisymmetric solutions are:

/____ i i iu = 1 + + 1 z + _ [- _ +_ r2] (4-1)

V -- /Rl--_-{zr+i [__ r _ /--2

and

' 2 3 - 2y z2 i 1 5 //.v2____u = 1+ /.y+------_-z+ 3(y71) +P," I-T-'8- +1
Z

i 10y + 57 47 + 15 2 2y + 9 r4] (4-3)+(½+ 2 z)_'2_+_ [ 288 - 24 r + 24

,/_-{zr+__T2 i i/_ 4y+15z)_v = z r+g[(-T - 12'

+(¼, 2 6 7 t r

/ /i-_-i- 5,_ 20Y96+ 63 y +1r32 + y +3/.9 _--r j} (4-4)

i

In the present analysis, the corresponding solutions are

1

u - ao(Z) +_ [bo(Z) +.b2(z)r 2] (4-5)

1
v =V/_ {al(z)r + _ [bl(z)r + b3(z)r3 ]} .-(4-6)

_ /

4-i
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and

i b2(z)r 2 ? C4(z)r4 ]
u = ao(Z) + [bo(Z) + ] + IR2 [Co(Z) + c2(z)r- + (4-7)

_R i b3(z)r3 3v = {al(z)r + _ [bl(Z)r + ] + IR2 [cl(z)r + c3(z)r

+ cs(z_r5]} (4-8)

Expanding the various functions of z in the above equations as power series about

the throat, the above solutions become

u =1+72 ! i l 2y+----_z +_[- _ +_ r ] (4-9)

v = { zr + _ [- 4_ 2 r +_ W--_- (4-i0)

and

V y +l z + 3(y+ 1) +P. [ 4 z

+({+i Z z) r2] + IR2 [ 10y + 57._ 4y +15 2..- y + i 288 24 r

+ 2X+ 9 4
24 r ] (4-11)

+v " - 12

" 28y + 93 /..7___1I_:A + 2-,+9 r31 288+( _# 2 6 z) [ ,, r

20y+63 1 y+l 3 y+3 / 2._.Z._rS]} (4-12)-' 96 2 r + 9

for axisymmetrlc flows. Comparison of Hall's solutions [ equations (4-1) through

(4-4) ] with the above equations reveals that Hall's solutions are contained ill the

present solution and consist of expanding the various functions of z as power series

about the throat and termlnat&ng the expansions at the n - mth term w_tere n is the

order of the solution desired and m is the order of the term in which the function

appears. Thus, Hall's solutions are mctually double expansion solutions, being
1

expansions in both _ and z. The z expansion limits the val_dity of Hall's solutlon

to the transonic region near the tltroat (z<< 1). Figures 4-1 through 4-12 compare
f-

, Hall's results with the present solution for the flow of air through hyperb011c nozzles.

4-2
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In these figures_ curve A refers to the present solution, curve B refers to

Hall's first approximation and curve C refers to Hall's second approximation.

Examination of the figures reveals that al_hougi_ both solutions are identical

at the throat, there are considerable differences (especially in the higher order

coefficients) away from the throat, l_nis explains the difference in sonic point

location between the present analysis and Hall's noted in Figures 2-9 through

2-11. In particular, the sonic point displacement in the present anaiysis

depends on the throat shape for all orders while Hall's first and second order

results are independent of the throat shape. Tables 4-1 through 4-3 compare Hall's

sonic point displacement results with those of the present analysis for hyperbolic,
1

parabolic and circular arc throat shapes as a function of _ for flows with specific

heat ratios of 1.2, 1.4 and 1.67. Examination of the tables reve_Is that there

is a noticeable effect of wall shape on the sonic point displacement. Comparison

of the first order and second order results betwee_ themselves r=veals that Hall's

results do not fall between those for the three nozzle shapes. It would appear

that Hall's analysis is applicable only to regions very near the throat and that

his results away from the throat in the neighborhood of the sonic point are valid

_ only for values of th_ normalized wall radius of curvature of five or greater.

Comparison of Hall's results with the present solution for planar flows

reveals the same relationship between the two first order and second order

Analyses as was shown for axisymmetric flows. Although the present third order

solution has not been completely worked out, comparison of Hall's third order

results with the third order throat boundary conditions obtained for the present

analysis reveals that the third order throat condition obtained from the two

anelyses differ. In particular, the third order throat conditions obtained for

the present analysis depend on the wall shape (whether paraboli=, hyperbolic or

circular arc) while Hall's results do not. Since the present solution is uniformly

.valid _or all nozzle flow regimes while Hall's solution is limited to the throat

region, it appears that Hall's third and higher order folutions may be of mixed

order _n relati0nshi p to the present analysis. Resolution of this point is beyond

the scope of the current study b'.c it would appear that Hall_s third order results

may be severely limited in their applicability.

4-3
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Table 4-1. Sonic Point Displacement on Axf3 of Axisymmetric
Nozzle as a Functio_ ef Inverse Normalized Throat

Wall Radius of Curvature (7 = 1.2)

Circular Throat Parabolic Throat Hyperbolic Throat Hall's Results

i x*
-- -- from First Order Solution
R y*

0.i 0.0883 0.0883 0.0882 0.0g29

0.2 0.i_3_ 0.1337 0.1330 0.1].73

0.3 0.1775 0.1767 0.1741 0.1436

0.5 0.2863 0.2746 0.2576 0.1854

0.8 * 0.6059 0.3928 0.2345

1.0 * * 0.4804 0.2622

x*
-- from Second O_der Solution
y*

0.1 0.0790 0.0791 0.0794 0.07_8

O. 2 0.1033 O. 1037 O. 1057 O. !078

0.3 0.1121 O. 1137 O.1195 O.1249

0.5 0.0970 0 .103 ° 0.1215 0.1386

0.8 0.0511 0.0502 0.0717 0.1075

1.0 0.0065 0. _088 0.0135 0.0289

* No solution obtained.

J.

1
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Tab!_ 4-2. Sonic Point Displacement on Axis of Axisymmetric
Nozzle as a Function of Inverse Ncmmalized Throat

Wall Radius of Curvature (y = 1.4)

Circular Throat Parabolic Throat Hyperbolic Throat Hall's Results

i x*
-- -- from First Order Solution
R y*

0.i 0.0924 0.0924 0.0922 0.v856

0.2 0.1403 0.1402 0.1393 0,1225

0.3 0.1866 0.1857 0.1827 0.1500

0.5 0.3049 0.2907 0.2706 0.1936

0.8 * 0.6808 0.4094 0.2449

i.0 * * 0.4953 0.2739

l x*
-- from Second Order Solution

! y.

0.i 0.0824 0.0824 0.0828 0.0832

0.2 0.1070 0,1075 0.1038 0,1122

0.3 0.1150 0.1168 0,1234 0.1297

0.5 0.0962 0,i036 0.1229 0 i&22

0.8 0.0370 0.0455 0.0659 0.1028

i.0 0.0021 0,0029 0.0045 0.0101

* No solution obtained.
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Table 4-3. Sonic Point Displacement on Axis of Axisymmetric
Nozzle as a Function of inverse Normali_ed Throat

Wall Radius of Curvature (y = 1.67)

Circular Throat Parabolic lbroat Hyperbolic Throat Hall's Resu!t_

I x*
- --- from First Order Solution
R y*

0.i 0.0977 0,0977 0.0975 0.0913

0.2 C.1488 0.1486 0,1476 0.1292

0.3 0.1987 0.1975 0.1939 0.1582

0.5 0.3308 0.3]24 0.2876 0.2043

0.8 * * 0.4309 0.2584

1.0 * * 0.5148 0,2889

x*
--- from Second Order Solution

: y*

0.i 0.0866 0.0866 0.0870 0.0876

0.2 0.1116 0.1121 0.1148 0.1178

0.3 0.1181 0.1202 0.1279 0.1355

0.5 0.0943 0.1021 0.1233 0.1461

0.8 0.0314 0.0389 0.0569 0.0944

1.0 -0.0036 -0.0046 -0.0075 -0.0181

* No solution obtained.
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5. TWO-ZONE NOZZLE EXPANSIONS

Since most rocket engines operate with a cool "barrier" zone near the wall

to protect the thrust chamber from the hot "core" gases, the exhaust gas expansion

through rocket engines can generally be represented as a two-zone expansion as

shown in Figure 5-1. In order to simplify the analysis, the barrier zone is

assumed to be confined to an annular ring. l_us the flow is axis)nnmetric in both

zones. (The analysis is also applicable to two--dimensional nozzle flows in which

the outer zone is planar.) Although it will be shown that the equations governing
f

the two-zone expansf _n reduce to those for a uniform expansion, the two-zone

solution will be derived separately.

The equations governing the inviscld isentropic expansion of two perfect

gases through a nozzle are

I [- _.1 v l-_x + 1 - - _ _+ 1 --- (u2 + --i Y+l _ y

4 Bu

- y-'STuv _ = 0 (5-1)

_v _u
= 0 (5-2)8x _y

in the inner zone and

(i- u2 - V+IV-I-2_j._.g, _. -21_v)j7
v +(_v2 i_-2,_v [_ l_(_2+v

_+iu;W + --" -r+l

4 -- @u
----- uv-- = 0 (5-3)
r+l _Y

@v Bu
= o (5-4)

@x @y

in the outer zone where the velocities ha, e been normalized with respect to the

appropriate throat sonic velocity and m equals 0 or I, depending on whether the

nozzle is planar or axisymmetric. As in the previous analysis, we shall seek

solutions of the above equations in nondimensional coordinates chosen from the

channel flow solutions such that the various velocity derivatives are independent

of the nozzle scale for large values of the normalized throat wall radius of

curvature. It can be shown from the two-zone channel flow solutlons (see Appendix A)

5-1

1967009614-040



that for choked flows

/_I k xu = i + 7+i R y* + "'° (5-5)

/u = 1+ 3[ 0H-i k x
¥+i R y* + "'" (5-6)

at the nozzle throat where x is the distance from the throat pla_e, y* is the

throat half height, R is the normalized throat wall radius of curvature and k is a

dimensionless constant of order one. Examination of these equations reveals that

as in the previous analysis, the axial nozzle coordinate x must be normalized with

respect to the distance fR y* in order for the dimensionless axial velocity

: gradients to remain of order one at the nozzle throat independent of the nozzle

scale. Similarly, since the nozzle scale perpendicular to the nozzle axis is set

by the throat half height y*, the perpendicular coordina<e y should be normalized

I with respe=t to the distance y*. Thus, solutions to the above equations for largeI
i

i values of the normalized throat wall radius of curvr, a should again be sought in
' terms of the normalized coordinates
!

z = y, (5-7)(
= _- (5-8)

r y,

rather than in the x,y coordinate system.

In the r,z coordinate system, the above equations become

/_R 11-u2- Y-I v21au + 11- v2 - _ 2,av + [i - /_!" 2_+1 I_-; _+luI_ y+l_u+v2)jrl_
au

---4_uv = 0 (5-9)- y+l T_

//'_- a_x auaz - Tr " o (5-._,o)

in the inner zone .and

_ _ _ __ , __
7+1 7+1 7+1 r

-- au
( ___4uvTr " o (5-n)

_+i
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i = 0 (5-12)
_v _u

R _z Dr

in the outer zone.

The boundary conditions on the axis and at the wall are

v(o, z) = 0 (5-13)

I

v%,
[ z) i drw
I' --- = (5-141
i 7(%,z)

Since the flow angle and pressure match at the streamline dividing the two zones,

the boundary conditions at the dividing streamline are

V(rs'Z) V(rs'Z) /T dr
U(rs,Z) ..... _ _zs (5-15)

U(rs,Z)

__7_
v-i

_'" P* _/_2 [i - 7-17+l(U(rs,Z)2+ V(rs,Z)2)]}'

_X_

= P--__-_-_ [1 _ _V-1 (U(rs,Z)2 + V(rs,Z)2)]}Y 1 (5-16)
L 2 7+ 1

where rs is the radial position of the dividing streamline.

The sonic pressure is equal in both zones (see Appendix A) since this

condition uaximlzes the mass flow through the nozzle and the throat plane then

sets tb_ flow through the nozzles. There are othar families of solutions to the

above equations for different pressure cunditions (such as the total pressure in

both zones being equal). In these solutions, the flow is not set at the throat

plane but is set elsewhere in the flow system. These solutions (which correspond

to nozzle flows with controlled external bleed such as occur in Jet engines or

ducted rocke_s) will not be further considered in this report•
dr dr

Since u, U, _ and _ are 0(1) at the throat, V and v must both be

o(f4./21• This suggests that the velocity components in both zones can be

_ expressed as expansions in inverse power of R for large values of the normalized
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throat wall radius of curvature, i.e.,

ul(r,z) u2(r,z)
= (r,z) + + + • (5-17)

u u° R R2 °"

vl(r,z) v2(_,z)

1 (5-18)
= [Vo(r,z) + + + ]

v R R2 "'"

_ _ ul(r,z) u2(r,z)
u = u (r,z) + + + • (5-19)

o R R2 ""

I' /_ - vl(r'z)Rv2(r'z)..: v = [Vo(r,z)+ + r2 + ...] (5-20)
[

': Substituting into equations (5-9) through (5-12) and equating powers of R-I

separ&tely gives the following sets of equations:

_u

= 0 (5-22)
Dr

{"

2 DUn . Dvn _v _)u(_-Uo1_+{_-_Uo_(_:+n}_,__o__y+l UoVo _ #n' n >.1 (5-23)

Du

_Vn-I _ - 0, n >.1 (5-24)Dz _r

in the inner zone where

= 2 DUo 2 a_Vo

_-i 2 _Vo_-I_Uo_+_ _+_Vo_,'__+[_oV_ �_u_}]_
_v 2 _Ul

�_ �T�(_oU_�u_ �_Vo_1° �l_o_ �_�Ä�Vo)_
•_Vl 2"_Vl 4 "_Ul

+(C+_ uoo_}_ �_(_UoO_ �_o}_ �(Uo_�U_o}_ _-2_7+1. "_

and

_ _
7+'

5-4

1967009614-043



Du
0

D_ \J t..u/

___nn+ 1 Xf/_u + ---u v n _ 1 (5-29)i- u° Dz - _ __ff_) 4 -- n --- -- o o Dr - _n'
y+l y+l

n = O, n >.i (5-30)
,l Dz Dr
i

in the outer zone where

D_ -- -- -- --_ - (_v_+T-,<,_,_ +(V-o_+__ _,_1_+:T_i__.+v_)_ ___.
y--+l 7--+1 Y+I ' o ± o

m

-- 2 -3L_ = (%u_+u,+_ VoV_)_+ "1,u_+
y-+l 7+1' o z

-- (v-o m)$+_+,7_l_o.Uo+_+,.oVJW+(,u;,+7+, 7+,
(

7+1 o.r 7+1
me B ,

The above system of equations are identical to those governing a uniform

expansion. Thus, the solution for the inner zone is identical to the solution

previously derived except that the dividing streamline boundary condition replaces

the wall boundary condition. As was shown earlier [equation (2-23)], the complete

solution of the above equatluns for v is of the fc_n
O

Vo(r,z) " al(z)r + _a3(z)r-i + (i - to)at(z) (5-3_.)
/

wher-_.the functions a3(z) and aS(z) are identically zero in uniform expansions

and in the Jnner zone. In the outer zone, however, a3(z) and as(z) are not

identically zero but are determined from the dividing streamline boundary conditions.

Thus, the ou%er zone solutions contain additional terms dependent on a3(z) and

aS(z) which do not appear in the inner zone solutions. Since planar two-zone

expanslons'were n_t of interest in the present study, only the axlsymmetrlc sol_tlon

is given below.
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Since the sclutlon in both zones is obtained as power series in Jnverse

powers of R, it is convenient to reduce the bouTldary conditions to a series of

conditions for the various order solutloDs. The axis and wall boundary conditions

are

Vn(O,Z) = 0 (5-34)I

! Vn(rw,z) ; Un(r,z)_ (5-35)

By expanding the position of the dividing streamline (r) iv inverse powers _f R,

i.e.,

: rsl(Z) + rs2(Z)

rs(z) = rsl(Z) + R R2 + ... (5-]6)

and noting that

u(rs,z)--u(rs_,z)+_rso 'z s 7r ,zrso

I
\ 2 _r2 _o ,z rsl + "_"

1 0

= Uo(rso 'z) _[ul(rso,Z ) 3u
+ + _-r--I r rsl(Z)] 4" 12[u2 (rs° 'z)

SO 'z

_uI _U _2u r_(z) 2

rsl(Z) + _ rs2(Z) +

+_--rrso'Z r ,z _r_- rso_Zso

(and similarly for the other velocity components), the first dividing streamline

boundary condltlen [equation (5-15)] ca_lbe rewritten in terms Of the various order

solutlonsas

dr

Vo(rso, Z) - Uo(rso,Z)dz--_ (5-38)

5-6
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8v _)u dr

r_ o_ z

drsl

+ u (r ,Z)d_---
o so (5-39)

8vI 8v _2v

v2(z ,z) +Iso _ r l(Z) + I° 2(z) + 1 8__i 2rso, z s _ r rs --2 rsl(V)
SO _z Eso, Z

I I I= u2(rso'Z) _ 8"_- r l(Z) + o r 2(z_S _ S "

rso'z rs o'z

+i 82u

-_r_ I l(Z)2] [ Su° I ]drsl
2 rs + Ul(rso, Z) + _r rs 1(z) ------dz

r " E S oi zs° _z

drs2

+ u°(rs°'Z)d-_-- _ (5-40)

_ dr

oV(rso'Z) * Uo(rso, Z) so
dz (5-41)

_ 8V

vl(rso, Z) +__ol _u

]rso_Z - r ,z "so

_ - dr

+ u (rs ,Z)d--_o (5-42)

-[

-'" -\ ----

5-7 . _ l"r
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dvI ov-- o 1 _2v

z) +--i r l(Z) + _---I r 2(z) + ° iv2(rso' _r !r ,z s _r ir ,z s 2 _r2 r _z rsl-(z)2
SO SO SO

_uI

[U 2 _UI0
= Ir ,z) +--I r=l(Z) + ?--r-- rs2(Z)

so Dr Ir ,z - r ,z
SO SO

O' 2] dr _u - drsl2 . 2 I rsi(Z) _]z-z---+ ,z) +--i r ](z). _n ._r __ _
or ir ,z Ir ,zso so

dr ^
-- sg

+ u (r (5-42)c so'Z)dz

by eauating inverse powers of R. _imilarly, by expanding as a power series and

equating inverse powers of R, the second dlviding streamline boundary condition

[equation (5-16)] can be rewritten in terms of the various order solutions as

m

_X__ "__/__,"

ry+l [! Xj_ 2]} Y-I --I-_- y+l Uo(rso'Z) = {-Y'J-'_ [i _-i uL(rso, Zfl]}V-I- 2 - _ (5-44)
r+l

1-l I ]_x_[i- _-__! 2 [u.(_-,_,+ o rsl(,.)
y+l Y+I Uo(r_o'Z) {2Uo(rso'Z) t ± SO "_-'rr ,z

so

+ Vo(rso, Z) 2}

w

[ \ ) [ %, ]= 7___1-.7-_i_(rso.Z)2_ {2u(r u-_(r +--, rsl(-)
¥+i 7+1 ° s°'Z) s°'_ _ ]rso,-

+V-o(rso,_)2} (5-45)
I
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[I- 7-1 Uo(rso z_ 2 {2u (rso z) ul(rso z) + o
(y+l) 2 y+l ' " o ' ' r ,z rsl(Z)

so

+ vo(rso,Z)2 ,2 -iI y+l 1 - -- u (r ,z)-_+i o sc

3Ul, 3Uo,{ 2u (r ,z) u2(rsc,Z) + 3--r--i rsl(Z) +-_-r ' rs2(Z)
0 SO I_r z r oSO i iz

P

+ 1 _-U sI(Z)21 [ 3____ rsl(Z)1

Ol o 2

2 _r 2 r + ul(rsoiZ) 4r ,z r ,z
SO SO

_V

+ 2V (rSo,z)[vl(rso,Z) + ___qO[ rsl(Z)]}

o . _r llrso,Z

(_+i) 2 --7+1 u°(rs°'Z)2] _ {2_°(rs°'Z)[ul(rs°'Z)

3u 2

+-_I rsl(Z)] + vL(rso.z )2}
Ir ,z

so

_ 2-1

--_ [i - _" UO(rsO,z ) ] {2L(rso,Z)[u2(rso,Z) + _Ir rsl(Z)- _+I 7+I ,,
80

_u _2_7

+ .__rOi b 2 _r2O, (z, 2]
rs2 (z) _ i r

[ slr ,z r ,z
so so

D

_u

[U'I o,_)r 12 - [cl( _ ,__)
SO Z 0 SO 80

SO

f
_v

+_l_}r r ,z rsl(Z) 1} (5-46)
so

.... ._9-
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The boundary condition on the position of the dividing streamline is that

the ratio of mass flows *!._ough the t_o zones be constant at the t_roat. This

condition can be expressed as

1

2-r_(r, o)](r, o)dr

Jr (o) ---- I - r (0)2 ._or (o) p'a* (0)2 2 r (o)

Sos 2,_ro(r,o)u(r,o) dr r so
so

r (o)

;so ]- 2 o 2_rul(r'°)dr + "'" }

= constant (5-47)

by expanding the irtegrals as a power series in R-I. Substituting for rs(0 )

[equation (5-36)] and equating powers of R-I to zero yields

-- -1/2

rso(0) = [! + x p*a*] (5-48)

rsl _0) = 0 (5-49)

r_o[l _ r o(O)2] r/_fso(O)r
rs2 (9) = " 2 L 2 -o 2_rul(r'°)dr

]

SO

where x is thu fraction of the nozzle mass flow in the outer zone.

Equations (5-22) and (5.-28) show that u (r,z) and u (r,z) are functionsO O

of z alone. Thus,

u (r,z) = a (z) (5-51)
O O

{ -- _u (r,z) = a (z) (5-52)
0 0

5-i0
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Equations (5-21) (5-27) and (5-34) are satisifed if v (r,z) and v (r,z) are of" _ 0 0

the form

v (r,z) = al(z)r (5-53)0

__ __ 3(z)r-iVo(r,z) = al(z)r + a (5-54)

From the remaining boundary conditions [equations (5-35), (5-38), (5-41),

t= ,,._ .-J t= I.o_] it ...... I_ __....._ILUWII

a dr
0 SO

al = r dz (5-55)
SO

(dr-- 0 W --
al = 2 2 rw dz r (5-56)so dz

r - r
W SO

a r r dr dr k

- o w so litw s___2o_ _:a3 = 2 2 dz rso dz _ ()-57)
r - r
w &o

_/_
__L_ y-i

2] y-1 Y.y+l y-1 Uo2 ] } (5-58)(y+l y-i Uo } = { _-- [i - y+ltT [i - y+l

- (5-59)
rs o l-x P'a*

Substituting the above results into equations (5-21) and (5-27) yields

( 2"da° ao2lao dr1-a°)bT_+2(I-_ ----_-= o <s-6o)y+l r dz
gO

m

- " drw !5_I
-a 21---q + 2 - --_ ao/r2_r2o/dz y-%_

W 80

which are tbe one-dlmenslonal channel flow equations. The solution of the above

( equations defines the one-dlmenslonal velocity dlstrlbutlo_ (Uo, Vo, u-- andS')
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and dividing streamline location (r ) through the nozzle. Since the one-dimencional
So

_olution is valid for all _subsonlc, Lransonic and supersonic) nozzle flow regimes,

the present solution will also be valid fur all nozzle flow regimes.

The first order equations are

- _-V-+ - _u v _

t __i 9_ _}u ; o 8_i %8v^ , o,v^

= 12UoUl + a_= Vo-;_ _ + ivO" + 2 7+_ UoUll_-r_ + /_[2UoU I + Vo_!_ (5-62)y+l y+l

8v 8u1O
- 0 (5-63)_.z _r

o V+I y+l o

m

o V+l V+l

Q

_v 8u10
= o (5-65)_z Dr

From equations (5-53), (5-54), (5-63) and (5-65), it is easily shown that

uI = bo(Z) + b2(z)r 2 (5-66)

= L(z) +_2(z)r 2 +L(z) An r (5-67)

where

b2 "_ _ dz (5-.68)

2 dz (5-69)

% - _ _-7o>
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Frnm equations (5-34), (5-62), (5-64), (5-_0) and (5-67) , it can be sho_-n

that

Vl = bl(Z)r + b3(z)r3 (5-71)

..... --I

vI = bl(Z)r + b3(z)r3 + b5(z) r £n r + b7(z)r

+ b9(z)r-3 + hll(Z)r _.nr (5-72)

where

- 2a b [__qo + 2 y-i al] (5-73)db ° °ll y_l ao2)b I da2177-z+ - =if - a° y+l o oLdz 7+1 -

•db 2 _ -
{i - 21-_--z+ 4(I Y-I ao2)b 3 8ao 7+1 y+l aoalb2

.da _. ___o 27 al (5-74)= 2aob2:d_ + 2 _ aI] + al2 [ y-! da ]• - y+l - ' y+l dz + y+l J

, 2 db- __-- "da0 -- _ _,
-- o o o --
y+l 7+1

°

• o + 2_i__:LI_ __2.-_12_3._4 %aI a-i-+ -- %a3 77"z (5-75)+ 2ala3 [-_'-Ida -- da3 4 ---- dal
7-+1 dz y-+l 7--+1 7--+1 y+l

2' db2

- _ - -- aoalb 2
7+1 7+1

da -. -

o " ,5-76
"_ _-+i" 7-+I77 + --y+l

2(1 - _ i2)b9 ,,, _.? (5-78)7-+._. .7+1_
(
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-2[ _ida- ] ,ala32_ ------°°+ 2X_a 1 + 4 aoa3 dz ---- (5-79)(i y-i a -)b!l a3 dz -- --
¥-+Io y+l _+i _+i x+l

From the remaining boundary conditions [equations (5-35), (5-39), (5-42), (5-45)

and (5-49)], it c_n be sho_m that

_Irw _ _3rw 3 + L rw £u rw + _7 rwI + _9rw 3 + _Ii< 1 £n rw

dr

= (b + b2£w2 + b4 £n rw) _ (5-80)0

drsl

drso

3 _ = (b + b2r s ) _z--+ a -- (5-81)blrso + b3rso ' alrsl o o dz

rso -- + _Trs_ 1 + %rso 3 + b--ll(z)rs;1 9.n rso_I + _3rs3o + bsrso £n rso

drso _ drsl

+ (al - a3rso )rsl _2rs _ o dz

ao2] -I-/-- [i _ 7-1 [2ao(b° + b2r 2) + al2 2 ]y+l y+l so" rso

y Ø�7-+io [2ao(bo + --b2rso2+ _4 £n rso)

-- r 2 -- r o2] (5-83)+a12 so+_ +a32

rsl(O)- 0 (5-84)

The solution of the above equations defines the first order velocity components

(ul, Ul, uI and vI) and dlvldln_ streamline location (rsl) through the nozzle.

Examination of equations t5-73) through (5-77) reveals that they are singular

at the nozzle throat (where a - a = I). Thus, the above equations are algebraic
o o

at the throat and can be solved directly for the throat conditions as In the
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uniform expansion case. Thu_,

b (0) = B (5-85)
o o

bl(0) = _(y+l)BoB I (5-86)

b2(0) = ¼(¥+Z)BZ2 (5-87)

i , .,,2 B13 (5-88)b3(O) - y_vv_j

bL(0) ,_ B" (5-89)o

_ i-61) (5-90)

-- 1-- ---'2

b2(O) =, _-(y+l)B 1 (5-91)

{

_7(°) = "_2 (5-95)

b9(O) = 0 (5-96)

_z£(o) = o (5-97)

where 2 -i/2

_ - t_c__+_{_1cv +\'_i c,-,,_80 _ BO
_- •

1
_I = (_}BI (5-99)

i - --2
_i = 1 - 2(y+Z)B 1 (5-I00)

(
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1 _l(rs 2 so _(y+l)Bl(l - rB = - B1 B1 (_+I) [7 - 1 - 2£n r ) + 1 -- _--2 2)2]o so

2 2 1 _+ _2 2) _ 2 2]- (_+I)B1 rso [_(_l) i(i- r_o + (_+I)B1 rso (5-i01)

= - -- [7(_+I)B1 + Bo] (5-102)
- _(Y+I)BI so rso ,y so

-- -- 1 - --2 1 E1 + 1 -_2 = - (Y+I)BI [_(7+IjBI - 7 _ Bo] (5-103)

The above first order two-zone throat conditions are identical to those

which would be obtained by a Sauer (2)"" or Hall (1)"" type transonic analysis for this
(7)

case . As discussed previously, the present solution and such a transonic solution

sill differ away from the throat plane, however.

Examination ol equations (5-23) and (5-29) reveals that they are also

singular at the nozzle throat (where u = u = i). Thus, the boundaryo o

' conditions for all orders are set at the nozzle throat and the various order

throat conditions can be determined directly.

Examination of equations (5-56), (5-57), (5-69), (5-70), (5-76) and (5-77)

d2r d3r d3r

showst_at_2and_4dependon_ _ndb_and_5dependon_ Thus,if w
dz2 dz 3 " dz 3

is d_,_continuous, the first order two-zone solution will also be discontinuous.

d2n+ir

Thus, in general, if the wall derivative w is nonanalytic, the nth order
dz 2n+l

solutions for the above equations will be discontinuous. The complete solution

of the above eauations will be analytic only if the wall is analytic.

The second order equations are
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(_-_oI_+(__Oo_I(_+_+_ ---Vo_ ´�--_

-(2UOO2+u12+2_ VoVl)_+[2_ovi+_ 2UoU2+u12__Vo

Y o 2VoVl}_- + 7-i Vo2"@Ul

• • , J I/ V _J--.u_/i l'o x+l -o-irBr Y+l_ "o • o /r 7+i_ o_i + i o _r

I.
{ BYI Bu2

= 0 (5-105)@z Br

1_--o'__'+(_--.=+i( :-21 _;'uo) _+ -_---uv ---
, Y+l o o _r

7+1 Y+l

_ _ v + ._ ,-_I..... ,+_v_-_I_.o U_',_o_,_(_uu_+ Vol_7+z 7+i

-- v •8u1- ._v_ ;_la --_(uA +_iVo}_ (s-Io6_+(v-_°+_-_uu,.)_+-_(__uI + +y-+z V+z o,r V+l

0 (5-107)Bz ?,r

From equations (5-71), (5-72), (5-105), and (5-107), it is easily shown that

u2 = Co(Z) + c2(z)r2 + c4(z)r4 (5-i08)

'f_

+ Cs(Z)r'ln r + clo(z)(£n r) _ + _12(z)r-2 (5-109)
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where

i dbl

c2 = 2 dz (5-iI0)

i db3

c4 = _ d-z-- (5-111)

db. . db.

-- J. I A _ (5-112)
c2 = 2 dz 4 dz

-- i db3

c4 - 4 dz (5-113)

_. __ d_7

c6 = d--_-" (5-114)

-- g- (5-115)uZ

-- 1 d_ll

clO = 2 dz (5-116)

L

From equations (5-104), (5-106), (5-108), and (5-109), it can be shown that

v2 = Cl(Z)r + c3(z)r3 + c5(z)r5 (5-118)

+ _19(,)r"1_nr+ 7al(=)r-l(_nr)2+ 2n(=)r-a_,,r (5-u9) _• ?

o +2(1- - (2,o_° +b [_+ 2dz v-tl ao *Cl o y+l _i
-4

t ' i5_18/ =

. J
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From the remaining boundary eondltlons [equaclons (5-34). (5-4o); t_-43), (3-46)

and (5-50)], it is found that

- - 2 "" - tw)2 - 3 _n rc r + C3rw +Csrw 5 + cTru tn r w + c9rw(tn + Cllrw w-lw

._ + _x3:-__ c15.-3+_7r -5+.:_19%.-1 tn. +_2x:_'l(_.:j2

0

rw)rw_2] e2 _ - - 2 in r :__ - 2 +.c4r_ �e6tn rw + CSrw w+ bll(l - tn rw = Cco + rw
(,

-- -- -21._. (5-134)
+ elO (In rw)2 + cl2rw _dz

(

+ c13rso 1 + cl5r o . / , ,._

- - ' - .o-- "3tn r +-[b 1 + 3b3rso 2 + _5( 1 + £n rso) b7r 2 . re . , ,_+- c23r So so - ,

-- _ .... 2 " -3 2 _

+-_11(1 - tn rso)rs;_]rs! + [a I _ a3rso ]rs2_+ a3rio . tel

Ii

.> , dz + [_o + _2rs '+'_4,' tn r so]d-_- + [c o + ;2 r.' + ;4 ri . - 7/>
_t I/ "

+ c6_n r _ + cBr r + (in r s .,, o<-___J SO 80 0 , iO .I ::

•j , k) d_>,

• ' dr__._6 .... (S < : '"° -:- -I . ,, ;135) .-
" (2_2r,0 + b_, , )_1 Jd ' _ ' "'- t_ " o

,, _, ,_' , ... ,/ ., _ "_) _._.

, 3 + c5 _ + [b I'_3b3_' , ]r +"_lr.2 ,, " ao d- .... '>' -" ,el r _o Ô�e3rso io ,_. _,,.

+ [b + bit d-_ + [!o �el-rlo+ eArlo .-- <'. ,, >, _ ..... , II ;,, ,,_ ,,,\ ,, ,. ,

c, _> £) ,>
; ' ' c, '/ " I,)

' <' _ _ _t, t3 ,= c) ' ,, '
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.... "" 1967009614-063



[1 -_-_'- '; "_ a12rso212 a° 2 -1(¥+1)2 - Y+I aI_'] [2aob o + 2aob2rso 2 + - _ [I _ ]_1 " _+I

[2aoCo + 2aoC2rso 2 + 2aoC4rso 4 + 4aob2rsorsl + bo2 + 2bob2rso 2

+ b22rso4 + 2alblrso 2 + 2alb3rso 4 + 2a12 rsorsz]

=., "T [1 - .._--2 -2 !
(_+1) 2 _+I aO] [2_°b'° + 2aj2rs°2 + 2_0_4 tn rso

: +-2"__'°2"+_ _"/'.o-_]_-_ [_-_ _o_]-_[';Jo+';o°-_'.o__z T-,I

+';A'_.o__"_;o__" r,,o+,_o_,,,_.o_,,,,',,o+'V.0("'_.o_'

( "+'V,_r.o''+ %",'_,,o'_.i+:"o",,,.o_,_..+_o_+,U,,_.o'
):' 0

_ _"_A'_-.:o+'I '.o_'+'_'7,,'_,,o'',,,.o+_'_(,,,r.o_2

+'_A'.o_ �'.7_5.2-+'V,..o'_..,o+,;_, �';_,..o"
© ,j

m

'' "' 80 r80

+ 2a31;'gr.o-4+ 2_3_zzr,o"2 tn r o + 2_;_r orz 2;lr o"3 r ll (S-137)_\ . _ e,i

t s __ '' " /
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• - ; . / t , ...
/ . ,1 /

. / ¢) //:
s i ' 6

4) : :k -" i

r n 2 rso 2 ._21[bo 2 2 {b22rso 4
(l- )- "'

as2 _ :... { bob2rso(o) . 2 + ,+ l

- ' --" i _--" - 4b_b_ l-rse@ rso _tn _.o '
" " + b°b2 _l-r 2 +3" I-r 2 1-r 2

80 50 SO_-
()

- _4_ -- " 1_=.2 ...... + 2b'_ -2- " rs°(tnl-r r's°)22 + 2rs°ln<r' } l

, (s-13s)

where the terms on. the right-hand side of equation (5-138) are evaluated at the

throat (z = 0). , ""
J

The solution of the above equations defines the second order velocity

components (u2,'v2, u 2 and7 2) and dividing streamline location (rs2) thcoush
( the nozzle. "

: As previously discussed, the above equations are singular at the nozzle

throat and can in prin_iple be solved directly to determine the second Order throat

conditions. This ha_ been done numerically in the present study) since direct

solution of the above equations for the second order throat conditions requires . i

the solution of twenty-six linear algebraic equations.
o

It is noted that both_the first and second order two-zone throat conditions I

are independent of the nozzle shape and are thus universally applicable to all ',-7 ,

two-zone nozzle flOws. The _olution away from the throat depends on the nozzle " i

shape for all orders, however. The third and higher order two-zone throat Won- i
U I

ditions depend on the nozzle shape as-in the uniform expansion case. i

Figures"5-2 and 5-3oshow the second order results of the,pruent,two-zone

analysis for I typical 'barrier' cooled rocket eniina having _:hyperbolic nolsla

with a normalized throat wall radius of curvaturQ of 5. The inner and outer ,

zone properttes were chosen as repras!ntatiV!of an _blative ensXne operating ,
J

with Aerozina - 50/H204 at an or¶till engtni:mixtureratio, of 1.6) tnwhich o

twe_y percent of the propellant ash flow is d_schargad through a barrier zone o .<

" ._ 5-25 <,
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: o •
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Figures 5-4-and $-5 ihov_ ,tlil second-order :constant pr_3sure and conlltani: Mich " ,_-
• f:- : , . , "+
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,:',, in the tOo-trails, the Hach_number dts'tributtons-are.quite different except near

-the sonic surfaces, t_hich ,are nearly Identical. The performs,nee losses associated "

" '_tc<h )barrier i coolins will be diecdsi>ed in a latei_ report. _"
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INOZZLE WAL

.-DIVIDING STREAMLINE

P _ 1.5 1.4 II.3 _I 2 . I .7 .6 .4
p*

I
i

_ .... i ] j r " . " j -- : ..... '''1 "

Figure 5-2. Contours o£ Constant Pressure in Two-Zone Nozzle Expans!cn.

Figure 5-3. Contours of Constant Speed in Two-Zone Nozzle Expansion.
/
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Figure 5-4. Contours of Constant Pressure in Uniform Nozzle Expansion.

i

I

iI

Figure 5-5. Contours of Constant Speed in Uniform Nozzle Expansion.

i
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APPF_NDIX A. 0NE-DibtENSIONAL CHANNEL FLOW EQUATIONS

A.I. 5niform Fx@_nsions

The one-dimensional channel flow equation governing the inviscid isentropic

expansion of a perfect gas through a nozzle is

u dYw (A-I)
11 _ u2) du ( Y - 1 I __ __. 0+ (u+ i) i - u2y +I v dx

"W

where the velocity has been normalized with r=spect ":othe throat sonic velocity

and _ equals 0 or I depending on whether the nozzle is planar or axlsymmetric.

At the nozzle throaL,

2

Yw = y* [ l + x +...]
2Ry,2 (A-2)

dYw x

dx Ry* (A-3)

By substituting the above expressions into equation (A-l), expanding u as a

power series in x and equating powers of x, it can be shown that

u = i +/_+
1 I X

+ i R y* + "'' (A-4)_y

for choked flows and

2

co+ 1 Ii- Y r I u,21 u* xU*u +... (A-5)
!, y + I | 1 - u.2 Ry.2

for unchoked flows (u* < i). The above equations are equations (2-3) and (3-1)

in the text.

A-I
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A.2. Multl.stream Expansions

Consider a rocket engine in which two fixed quantities of propellant of

different mixture ratio are injected into a finite contraction ratio (Ec) chamber

in such a manner that they hurn and expand through the nozzle withouL mixing. The

one-dimenslonal channel flow relationships governing the invlsc_d isentroplc

expansion of two perfect gas strea_.s through a nozzle are

I /_!-

/y2____! i P 2/7 r 'Pm = A Po _-(_--) [i-. !_--) Y (A-6)
o o - o

and _-'_i p 2/y [,p ,_]"x\ emlv)  -[17J' cA-.
o o o

where the pressure in both streams is equal throughout the nozzle. Applying the

above mass flow relationships at the chamber and throat, it is found that

m - Ac 04 7-1 RT o lpo I - ) Y (A-8)

-- Pc y-l_

7 - __' _ !Pcl-/Y ] <A-9)
o o o

{b,i( ]2Y 1 2/_ " p ..L:!]
= 1- _-_l x (A-lo)

m AtPo --I RT ° o L o

' m

: ] <,,-,,,t O/ _-IR'_ V"
0 0

The pressure ratio function appearing on the rlght-hand side of the above equations

monotonically increases as the pressure ratio decreases, reaching a maxlmum at

the sonic pressure ratio. Thus for fixed mass flows through the two streams,

A-2

i i i
i i i
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-- Pt Pt

'_quatlons (A-10) and (A-If) _how that A Fv and A P _re minimum wh_.: _ and --D r
O

-- O
%.

are the sonic pressure ratios, (@i-i) _-1 and (22__)7-1 , respectively, Since for
y+l

"t Pt

fixed mass flows through the two streams, At and At are a minimum when T and --
o P

0

Pt P
are the sonic pressure, rstios, then Po and Po arc =_o_ a minimum when_--and--_

o P
are the sonic pressure ratio, o

Since the total flow area equals the nozzle area,

A + A = _ A* (A-12)
C C

equations (A-8), (A-9) and (A-12) may be solved for the contraction ratio,

yielding

m

"%* _._

P "/YI" Pt Y
l-A*Po RT

O O O

+ m
m

IA 1 Pc)-- --=- 1- (_---_ (A-13)
- .--T_ P

O O O

Examination of this equation reveals that the pressure ratio functions on the

right-hand side of the equation will be maximumwhen P and P are mlnlmum foro o

fixed mass flows through the two streams and fixed engine 8eometry (contraction

ratio). Since these functions monotonically increase as the pressure ratios

P P

p and--_Cdecrease,_ it i_ concluded that the engine (static) chamber pressure, Pc'
o P

O

will be a minimum when P and P are a minimum. Since tb" engine will operate at
0 O

A-3

1967009614-073



minimu_ cLhamber pressure in the _bseuce of external influences on the flow through

the nozzle (such as secondary injection ahead of the throat, etc.), it is concluded
P P
t t

that at the throat, _-. and_----are the sonic pressure ratios for fixed mass flows
o P

o

thzough the two streams. Thus the sonic polnts in the two streams coincide and

are located at the nozzle throat. Since the sonic pressures in the two streams

are equal, the total pressures in the two streams are unequal unless the two streams

are identical (y = y), their ratio being

_J_ _Z_

Po t o 2 _-i

o o

Generallzing the above analysis to multistream flows, it is concluded that:

m The sonic pressure of each stream is equal.

o The sonic point of each stream colnclde_ with the [gzzle throat

(for one-dlmensional flows).

• The total pressure of each stream is different (unless the streams

are identical).

• There does not exist a common engine (stream) stagnation pressure

for performance reference.
!

i o The proper performance reference pressure is the sonic pressure
for multlstream nozzle flows since it is the only reference pressure

I common to all streams.
i

Thus Wrobel's* analysis of multlstrezm rocket nozzle flows is incorrect,

since it is based on the assumption that the total pressure in each stream is

equal and that there exists a common stream (englne) stagnation pressure for

performance reference.

*Wrobel, J. R., Some Effects of Gas Stratification on Choked Nozzle Flows,

AIAA paper No. 64-266, presented at the first annual AIAAmeetlng,

Washington, D. C., 2q June to 2 July, 1965.
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A:3. Two-Zone Expansions

The one-dlmenslonal channel flow equations governing the invlscld two-zone

isentroplc expansion of two perfect gases through a nozzle are

idx y+l lys dx

in the inner zone and

y+l Yw - Ys

( _ dYw '_' dYsi = 0 (A-16)Yw d-'f--Ysd-q'-1

in the outer zone where the velocities have been normalized with respect to the

appropriate throat sonic velocity and w equals 0 or 1 depending on whether the

nozzle and the two zones are planar or axisymmetrlc. Since the sonic points of

both streams coincide with the nozzle throat,

2

Ys = y_[Z+ T/_x--_+ ...] (A-u)

dYs x
.... = -_ _ (_-18)
_ RsY* ....

By substituting the above expreaqions and equations (A-2) and (A-3) into equations

(A-15) and (A-16), expanding a and u as power series in x _nd equating powers of

x, it can be shown that

u - i +/_-!+I_-_I x
y+l y_ as y* + "'' (A-19)

L .. ,,

-- . _ x_..+ (A-20)

u l +/ 7+iy. +l R s Y* "'"

A-5
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Since the pressure and sonic pressures are equal in both zones of the nozzle,

_Z_ _X_

),4 L-:" -P__
. [_i (i-_i J._ = -cI - u_)]v-1 <A-21;

P* - 2 7+i 2 y--+l

Differentiating this expression it is found that

duI E_x " dx (A-22)

Using this relationship and solving equations (A-19) and (A-20) for Rs, it is
found that

[_ y,_+l ,_+i

2 _+I - YS Ys_'_+I]Y-_Z (A-23)

Rs " v+l y,,,,+l + y*_+----YJYs*

Substituting the abov6 expression into equations (A-19) and (A-20) it is found

that

-- / 7+1 R y* '''

._2_'+1Y* 1_ Ys y_,,,+l1k = 4_ + __ (:.-26)

I Y$ y,0_+l

i --2

it is noted that k is s dimensionless constant which varies between _2 r+l_and 1

and is thus of order one. 7 7+1

!

A-6
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APPENDIX B. RATIONAL FRACTION APPROXIMATIONS

Van Dyke* discusse, the use of various transformations to improve the

convergence of perturbation expansions, of particular interest in the current

analysis is the use of rational fraction approximations of such series. Consider

Uhe series

u(0,1) = i + Z___,. !4Y+ !5 (B-l)
_ 288R2

which is the second order solution for the throat wall velocity in axisymmetric

• 0($)nozzles Since the neglected terms in the series are , alternate rep-

resentations of the above series may be considered which match the indicated

terms for large R but whose behavior for small R (for which the above serles is

ill-behaved) is a better represQnta_ion of the true solution.

Following Van Dyke*, the above series can also be represented as

1 + 147 + 33
• ,72R

u(O,l)- • 14y+ i5 (B-2)
72R

which, when expanded in inverse powers of R, matches the first three terms of

the above series for large R. The advantage of the above representation can be

seen by comparing the behavior of the two expressions as functions of R as shown

in _gure B-.I. Examination of the figure shows that the throat wall velocity

given by the first expression maxlmizes for R approximately one , and indicates

that the throat wall velocity is subsonic for R less than approximately one-half,

which is physically Impossible. In the limi_ as R goes to zero, the first

expression 8oes to negative infinity. Thus, the first expression is clearly not

a good representation of the wall velocity for small R.

*Van Dyke, M., Perturbation Metho,ds in ,Flui,d, Mechanics_ Academic Press,
New York, 1964.

B-1

1967009614-077



Examination of the behavior of the second expression as a function of R

indicates that the throat wall velocity monotonically increases as R decreases,

14y+ 33
reaching the limit 14y + I_ as R 8oes to zero. Physically, the wall velocity is

known to behave in this _nner. Thus the rational fraction representation of

the throat wall velocity is probably closely representative of its=ru_bebavior

for all values of R and can be used to approximately determine the accuracy of

various order solutions.

In a similar faJhion, _t can b_ shown that the rational fraction approxi-

mation for the throa_ axis velocity is

1 + 10_L+ 39

u(O,O_- , , 72R (B-3)
I + 10_L+ 57

72R

in axisymmetric nozzles. The above rational fractions .ere used for estlmatlng

th_ accuracy of the various order eolutions in Section 2.

t

B-2
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1.3

RATIONAL FRACTION APPROXIMATIL."',I

I
i.2 I

u(o,))

POWER SERIES SOLUTION

.08 , , ,± i, i l, j, . .. ......................
0 0.; 1.0 1.5 2.0 2.5

VR

Figure B-I. Comparison of Power Series and Ration_l Fraction

Representation of the" Throat Wall Velocity as a Function

of the Inverse Normalized Throat Wall Radius of Curvature,
Y = 1.4.
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